
DEFENSE TECHNICAL INFORMATION CENTER

ItfMMJtftkkjmitAmtj

DTICfhas determined on I / ryjc/^flthat this Technical Document has the
Distribution Statement checked below. The current distribution for this document can be
found in the DTICf Technical Report Database.

a DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

© COPYRIGHTED. U.S. Government or Federal Rights License. All other rights and
uses except those permitted by copyright law are reserved by the copyright owner.

I | DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies
only (fill in reason) (date of determination). Other requests for this document shall be
referred to (insert controlling DoD office).

] DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government Agencies
and their contractors (fill in reason) (date determination). Other requests for this document
shall be referred to (insert controlling DoD office).

] DISTRIBUTION STATEMENT D. Distribution authorized to the Department of Defense
and U.S. DoD contractors only (fill in reason) (date of determination). Other requests shall
be referred to (insert controlling DoD office).

] DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only (fill
in reason) (date of determination). Other requests shall be referred to (insert controlling
DoD office).

] DISTRIBUTION STATEMENT F. Further dissemination only as directed by (insert
controlling DoD office) (date of determination) or higher DoD authority.

Distribution Statement F is also used when a document does not contain a distribution
statement and no distribution statement can be determined.

] DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government Agencies
and private individuals or enterprises eligible to obtain export-controlled technical data in
accordance with DoDD 5230.25; (date of determination). DoD Controlling Office is (insert
controlling DoD office).

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden tor this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing daia sources
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense Washington Headquarters Services Directorate for Information Operations and Reports (0 704-01881.
1215 Jefferson Davis Highway Suite 1204. Arlington. VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law. no person shatl be suhject in any
penalty for tailing to comply with a collection of information if it does not display a currently valid OMB control number

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE IDD MM-YYYY)

23-12-2010
2. REPORT TYPE

Final Report
DATES COVERED (From • To)

15-Mar-2009-30-Sep-2010
4. TITLE AND SUBTITLE

Invariant Rules for Software Producibilitv and Assurance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

N00014-09-1-0651

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Liu, Yanhong (Annie)
Stoller, Scott D.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Research Foundation of the State University of New York
Stony Brook. NY 1 1794-3362

PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES)

Office of Naval Research
One Liberty Center
875 North Randolph Street. Suite 1425
Arlington, VA 22203-1995

10. SPONSOR/MONITORS ACRONYM(S)

ONR

11. SPONSOR/MONITOR'S REPORT
NUMBERIS)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES 20110112276
14. ABSTRACT

This project develops a unified framework for rigorously capturing and applying software design and development knowledge to
significantly improve software producibility and assurance under complex and challenging requirements facing Navy software for
cyberspace. The framework is based on invariants, which underly all requirements about dependencies, concurrency, distribution,
fault-tolerance, security, and general safety and correctness as well as cost and efficiency conditions.
Invariant rules are used to declaratively specify how complex invariants are maintained under all possible updates to system slates.
The design and development knowledge captured by invariant rules underlies not only invariant maintenance for design and
optimization, but also invariant verification for validation and assurance, as well as general transformations for instrumentation,
refactoring, etc. We especially investigate the use of invariant rules for specifying critical aspects of complex systems, such as in
web frameworks and mashups, that may involve concurrency, distribution, trust and security.

15. SUBJECT TERMS

invariants, program transformation, program optimization, program analysis, runtime checking, rule languages, complexity
guarantees, computer security, distributed systems

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER /Include area code)

Standard Form 298 (Rev 8 98)
Piescnbpd by ANSI Sid 239 18

Final Project Report to Office of Naval Research

Invariant Rules for Software Producibility and Assurance

PI: Yanhong (Annie) Liu
Co-PI: Scott D. Stoller
PI Institution: State University of New York at Stony Brook
PI E-mail: liu@cs.sunysb.edu
Grant Number: N000140910651
Period: 3/15/09-9/30/10
Amount: $282,719

Project Attributes.

* Number of refereed papers/book chapters published: 10

* Number of unrefereed reports and other articles: 4

* Number of project presentations: 16

* Number of post-doc supported: 1, at 20-40% of full time

* Number of graduate students supported: 3, at 10-100% of full time

Abstract.

This project develops a unified framework for rigorously capturing and
applying software design and development knowledge to significantly
improve software producibility and assurance under complex and
challenging requirements facing Navy software for cyberspace. The
framework is based on the notion of invariants that are essential in
all software systems, because invariants underly all requirements about
dependencies, concurrency, distribution, fault - tolerance, security, and
general safety and correctness as well as cost and efficiency
conditions.

Invariant rules are used to declaratively specify how complex
invariants are maintained under all possible updates to system states.
The design and development knowledge captured by invariant rules
underlies not only invariant maintenance for design and optimization,
but also invariant verification for validation and assurance, as well
as general transformations for instrumentation, refactoring, etc. We
especially investigate the use of invariant rules for specifying
critical aspects of complex systems, such as in web frameworks and
mashups, that may involve concurrency, distribution, trust and security.

Summary of Technical Progress.

Contents
1 Invariant rules and invariant-driven transformations

1.1 Language and framework for invariant-driven transformations [GPCE 2009]
1.2 Alias analysis for optimization of dynamic languages [DLS 2010]
1.3 Composition for instrumentation and incrementalization [TR 2010]
1.4 Compiling object-set queries for incremental computation [TR 2011]

2 Analysis and efficient implementation of rule languages
2.1 From Datalog rules to efficient programs [TOPLAS 2009]
2.2 Precise complexity analysis for efficient Datalog queries [PPDP 2010]
2.3 Efficient graph queries through Datalog optimizations [PPDP 2010]
2.4 Role activation analysis for trust management policies [TR 2011]

3 Optimizing distributed algorithms and verifying concurrent algorithms
3.1 Programming and optimizing distributed algorithms [TR 2010]
3.2 Model checking 1inearizability via refinement [FM 2009]
3.3 Formal verification of scalable nonzero indicators [SEKE 2009]

4. Security policy and software assurance [C&S 2010, CNSM 2010, RV 2010]

1. We designed an invariant rule language and framework and developed
new analysis and transformations for using invariants to significantly
increase software producibility and assurance. Invariant rules
declaratively specify how complex invariants in software systems are
incrementally maintained under all possible updates to system states.
These invariants underly all requirements about dependencies,
concurrency, distribution, security, and general safety and correctness
as well as cost and efficiency conditions. Invariant-driven
transformations include not only invariant maintenance for design and
optimization, but also invariant verification for validation and
assurance, as well as general transformations for instrumentation,
refactoring, etc.

1.1. We created a powerful language and framework that allow
coordinated transformations driven by invariants to be specified
declaratively, as invariant rules, and applied automatically. We also
developed prototypes for transforming Python and C programs, and
successfully used the prototypes in a variety of applications:
generating efficient implementations from clear and modular
specifications by incrementalization; instrumenting programs for
runtime verification, profiling, and debugging,- and code refactoring.

Y. A. Liu, M. Gorbovitski, and S. D. Stoller. A language and
framework for invariant-driven transformations. In Proceedings of
the 8th International Conference on Generative Programming and
Component Engineering, pages 55-64, Denver, Colorado, October 2009.
ACM Press.
http://www.cs.sunysb.edu/~liu/papers/Inv-GPCE09.pdf

1.2. We developed an alias analysis for a full dynamic object-oriented
language, and used it for applying invariant rules for
incrementalization and specialization. The analysis is flow-sensitive;
uses precise type analysis and trace sensitivity, a powerful form of
context sensitivity; and uses a compressed representation to
drastically reduce space usage. Despite the challenge of the problem,
experiments show that our analysis has good precision and efficiency
and represents the best trade-off among 18 variations of the analysis.

M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel, and
K.T. Tekle. Alias analysis for optimization of dynamic languages.
In Proceedings of the 6th Symposium on Dynamic Languages, pages
27-42, Reno, Nevada, October 2010. ACM Press.
http://www.cs.sunysb.edu/~liu/papers/Alias-DLS10.pdf

1.3. We developed invariant rules for instrumenting and
incrementalizing real applications, and a method for composing the
rules to improve both the transformed programs and the application of
the rules. The example instrumentation is for ranking peers in
BitTorrent. The example incrementalizations are for optimizing the
instrumentation of BitTorrent, for efficiently computing the quality of
network hosts' connections using NetFlow, and for generating efficient
implementations from formal specifications for Constrained RBAC.

M. Gorbovitski, Y. A. Liu, S. D. Stoller, and T. Rothamel.
Composing transformations for instrumentation and
incrementalization of real applications. Technical Report DAR
10-48, Computer Science Department, SUNY Stony Brook, May 2010.
http://www.cs.sunysb.edu/~liu/papers/Compose-TR10.pdf

1.4. We developed a method for statically transforming complex queries
over objects and sets into efficient incremental implementations. The
queries may involve objects that are arbitrarily aliased and sets that
are arbitrarily nested. The method handles any update to the objects
and sets that are queried over. The generated implementations use
sophisticated auxiliary data structures and incrementally maintain them
for efficient indexing. Previous work either was not fully automatic or

could not handle as general forms of queries, produce as efficient
implementations, and give as strong static guarantees.

J. Brandvein and Y. A. Liu. Compiling object-set queries for
demanded incremental computation. Technical Report in Preparation,
Computer Science Department, SUNY Stony Brook, December 2010.

2. We developed automatic methods for complexity analysis and
efficient implementations of logic query languages and applied them to
a variety of applications.

2.1. We extended and refined our method for generating optimal
implementations from Datalog rules and added experimental evaluations
that confirmed the analyzed time and space complexities. The running
time is optimal in that only useful combinations of facts that lead to
all hypotheses of a rule being simultaneously true are considered, and
each such combination is considered exactly once in constant time. We
also added new applications to several analysis problems, some with
improved algorithm complexities and all with greatly improved algorithm
understanding and greatly simplified complexity analysis.

Y. A. Liu and S.D. Stoller. From Datalog rules to efficient
programs with time and space guarantees. ACM Transactions on
Programming Languages and Systems, 31(6) :l-38, August 2009.
http://www.cs.sunysb.edu/~liu/papers/Rules-TOPLAS0 9.pdf

2.2. We developed precise time and space complexity analysis for
efficiently answering Datalog queries, and precise relationships
between top-down evaluation with tabling and bottom-up evaluation
driven by demand. We also developed a method for transforming the
rules for efficient bottom-up evaluation; the method is simpler than
magic set transformation and produces simpler rules that yield
exponentially smaller space in the number of arguments of predicates.
Experiments on benchmarks from OpenRuleBench support our results.

K.T. Tekle and Y. A. Liu. Precise complexity analysis for efficient
Datalog queries. In Proceedings of the 12th ACM SIGPLAN
International Conference on Principles and Practice of Declarative
Programming, pages 35-44, Hagenberg, Austria, July 2010.
http://www.cs.sunysb.edu/~liu/papers/RuleQuery-PPDP10.pdf

2.3. We developed a novel combination of transformations for
generating efficient implementations for a powerful graph query
language. Our method combines transformation to Datalog, recursion
conversion, demand transformation, and specialization, and finally
generates efficient programs with precise complexity guarantees. It
improves an O(VE) time complexity factor using previous methods to
0(E), where V and E are the numbers of vertices and edges,
respectively. Our experiments confirm the analyzed complexities.

K. T. Tekle, M. Gorbovitski, and Y. A. Liu. Graph queries through
Datalog optimizations. In Proceedings of the 12th ACM SIGPLAN
International Conference on Principles and Practice of Declarative
Programming}, pages 25-34, Hagenberg, Austria, July 2010.
http://www.cs.sunysb.edu/~liu/papers/ImplGraphQL-PPDP10.pdf

2.4. We developed automatic analysis of role activation and
deactivation rules in trust management policies. The analysis checks
important consistency and completeness criteria. When violations are
detected, the analysis automatically detects possible causes of the
violation and determines possible remedies and simplifications to the
policies. We applied the analysis to a large trust management policy
for a proposed national Electronic Health Record (EHR) service. It
found a number of violations and determined possible remedies and
simplifications.

Y. A. Liu, K. T. Tekle, and S. D. Stoller. Role activation

analysis for trust management policies. Technical Report in
Preparation, Computer Science Department, SUNY Stony Brook, 2011.

3. We developed powerful compilation and verification methods that
heavily exploit invariants for optimizing distributed algorithms and
for verifying concurrent algorithms.

3.1. We created a simple and powerful language for programming
distributed algorithms, a compilation method to generate their
implementations, and powerful optimizations to incrementalize expensive
synchronization conditions and remove unnecessary messages. The
language can express distributed algorithms cleanly, almost like pseudo
code descriptions, free of implementation details, but with a precise
semantics for execution. We programmed a variety of distributed
algorithms, and successfully generated their implementations and
optimized implementations.

Y. A. Liu, B. Lin, and S. D. Stoller. Programming and optimizing
distributed algorithms. Technical Report in Preparation, Computer
Science Department, SUNY Stony Brook, December 2010.

3.2. We developed a new method to automatically check linearizability
based on refinement relations from abstract specifications to concrete
implementations. The method exploits model checking of finite state
systems specified as concurrent processes with shared variables, and
uses partial order reduction to reduce search space. Our tool
automatically checked a variety of concurrent algorithms, including the
first algorithms for the mailbox problem and scalable NonZero
indicators, and was able to find all known and injected bugs.

Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking
linearizability via refinement. In Proceedings of the 16th
International Symposium on Formal Methods, pages 321-337,
Eindhoven, The Netherlands, November 2009. Springer,
http://www.cs.sunysb.edu/~liu/papers/MCLinear-FM0 9.pdf

3.3. We carried out a formal verification of a new concurrent data
structure, Scalable NonZero Indicators. The algorithm supports
incrementing, decrementing, and querying the shared counter efficiently
without blocking. It is highly non-trivial and its correctness is
challenging to prove. We proved that it satisfies linearizability, by
showing a trace refinement relation from the concrete implementation to
its abstract specification. These models are specified in CSP and
verified automatically using the model checking toolkit PAT.

S. J. Zhang, Y. Liu, J. Sun, J. S. Dong, W. Chen, and Y. A. Liu.
Formal verification of scalable nonzero indicators. In Proceedings
of the 21st International Conference on Software Engineering and
Knowledge Engineering, pages 406-411, Boston, Massachusetts, July
2009.
http://www.es.sunysb.edu/~liu/papers/SNIZ-SEKE0 9.pdf

4. We developed new methods and frameworks for analyzing security
policies and helping increase software assurance.

S. D. Stoller, P. Yang, M. Gofman, and C. R. Ramakrishnan. Symbolic
Reachability Analysis for Parameterized Administrative Role Based
Access Control. Computers & Security, 2010. In Press.
http://www.cs.sunysb.edu/~stoller/papers/symbolic-reachability-journal.pdf

S. D. Stoller. Trust Management for Web Services. In Proceedings
of the 6th International Conference on Network and Service
Management, pages 262-265. IEEE Press, 2010.
http://www.cs.sunysb.edu/~stoller/papers/cnsm-2 010.pdf

J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund,
S. A. Smolka, S. D. Stoller, and E. Zadok. Aspect-Oriented

Instrumentation with GCC. In Proceedings of the 1st International
Conference on Runtime Verification, volume 6418 of Lecture Notes in
Computer Science, pages 405-420. Springer-Verlag, 2010.
http://www.cs.sunysb.edu/~stoller/papers/rv2 010.pdf

Finally, a book has been basically completed and is being revised. It
covers extensive research results that exploit invariants for
developing efficient programs with high productivity and assurance.

Y. A. Liu. Systematic Program Design: From Clarity to Efficiency.
With offers for publication from MIT Press, Cambridge University
Press, Springer, and Higher Education Press. Publication expected
2011.

Participation in Other Research Projects.

The following NSF project focused on optimizations across object
abstraction that transform clear modular design into sophisticated
efficient design based on invariants:

Y. A. Liu, PI (S.D. Stoller, co-PI). Clarity and Efficiency in
Design, 2006-2011.

The following industry gift grant focuses on generating incremental
implementations from set-based specifications:

Y. A. Liu, PI. Generating Incremental Implementations From
Set-Based Specifications. Hengsoft, 2009-2010.

The following NSF project focuses on complexity analysis and powerful
optimizations for improving logic rule engines:

Y. A. Liu, co-PI (M. Kifer, PI, and D. Warren, co-PI). Performance
Analysis and Optimization for Logic Rule Engines, 2010-2013.

The following AFOSR project focuses on making embedded software more
robust through runtime monitoring and recovery based on control theory:

S. D. Stoller, co-PI (S. A. Smolka, PI, and Radu Grosu, Klaus Havelund,
and Erez Zadok, co-PIs). Survivable Software. 2009-2011.

The following NSF project focuses on generation and enforcement of
low-level access control policies that ensure higher-level system
integrity goals:

S. D. Stoller, co-PI (R. Sekar, PI, and C.R. Ramakrishnan, co-PI).
Proactive Techniques for Preserving System Integrity: A Basis for
Robust Defense Against Malware, 2008-2012.

The following ONR project focuses on generation, analysis, and enforcement
of security policies in distributed systems:

S. D. Stoller, PI (R. Sekar and C.R. Ramakrishnan, co-PIs). A Framework
for Analyzing and Ensuring Trust in Service-Oriented Architectures,
2007-2012.

Transitions and DOD Interactions.

A startup software company, Hengsoft, is working on building the
incrementalization method we have developed into their product. During
this grant period, they supported our research with a gift grant to
Stony Brook University, focusing on a prototype for generating
incremental implementations from set-based specifications. Our method
improves over the best finite differencing method of Paige by
automatically deriving the incremental maintenance code in the rules.

A hot startup company in logic databases, LogicBlox, eagerly hired our
most recent Ph.D. graduate, Tuncay Tekle, and tasked hims to build our
method for optimizing Catalog rules and queries into their product.
Our method cleanly solves the challenging open problems of providing
precise time and space complexity analysis for rule-based queries, and
achieving drastic optimizations in both time and space.

Software and Hardware Prototypes.

1. Prototype Name: InvTS
+ URL: https://secure.mickg.net/darlab/cgi-bin/InvTS/index.cgi
+ Availability: Used in teaching and by interested graduate

students. The system is available through a web interface.
+ Description: A system for automatically applying invariant rules

for incrementalization and program transformations in general.
Through the web interface, a user can run it for Core RBAC and
Constrained RBAC implementations or provide other programs or
rules for transformations.

2. Prototype Name: RuleQuery
+ URL: will be in XSB, which is at http://xsb.sourceforge.net
+ Availability: Internal use by interested faculty and students.

Parts of it will be included in the XSB distribution.
+ Description: A system for precisely analyzing time and space
complexities of Datalog queries and for optimizing Datalog
queries by source-to-source transformations.

3. Prototype Name: Setlnc
+ URL:
+ Availability: Internal and external use by graduate students

and Hengsoft developers. The system is available by request.
+ Description: A system for automatically compiling set queries

and updates into efficient incremental computations.

Honors, Prizes, Awards, or Promotions Received.

Liu was awarded State University of New York Chancellor's Award for
Excellence in Scholarship and Creative Activities, April 2010.

Stoller was promoted to full professor, effective September 2010.

Stoller received Outstanding Community Service Award, IEEE Technical
Committee on Security and Privacy, 2009.

URLs.

List of selected publications available online:

http://www.cs.sunysb.edu/~liu/#publicat ions

Overview of our research projects:

http://www.cs.sunysb.edu/~liu/#projects
http://www.cs.sunysb.edu/~liu/#overview

Advanced graduate courses:

Advanced Programming Languages
http://www.cs.sunysb.edu/~liu/cse626/

Protocol Design and Analysis
http://www.cs.sunysb.edu/~liu/cse5 92/

Post-doc and Ph.D. Students Supported.

1. Name: Jonathan Brandvein, Ph.D. Student
+ US Citizen/Permanent Resident: US Citizen
+ Thesis:
+ Graduated: Expected 2013
+ Job:

2. Name: Tuncay Tekle, Ph.D. Student
+ US Citizen/Permanent Resident:
+ Thesis: Efficient Datalog Queries with Time and Space Guarantees
+ Graduated: December 2010
+ Job: LogicBlox

3. Name: Tom Rothamel, Post-doc
+ US Citizen/Permanent Resident: US Citizen
+ Thesis:
+ Graduated: September 2010
+ Job: Lemahtor, LLC

